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A generalisation of Kramer's method is developed for computing the escape 
time in non potential systems. The method is applied to i) moderate friction case 
in the Kramers problem; ii) a certain two dimensional system treated by Caroli 
et. al. using a perturbative method. 
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1. INTRODUCTION 

In this paper I give an account of a method by which the asymptotic 
relaxation time of a bistable system may be computed. This method was 
given in a preliminary version in Ref. 1, and is essentially a generalization 
of the method of Kramers, (2) to multidimensional nonpotential systems. It 
bears a strong affinity to methods developed by Landauer and Swanson (3) 
and Langer. (4) In the preliminary version, no applications of the method 
were given, and since the method is at first glance somewhat intricate, I 
have chosen two examples to demonstrate its application, which in practice 
turns out to be relatively straightforward. These are as follows. 

(i) Kramers' Equation. (2) Here a particle with position x, and 
momentum p (and unit mass) moves according to the stochastic differential 
equations 

dx =pdt 
(1.1) 

dx  = [ - U ' ( x )  - -~p ] dt + (2~,T)~/2 d W  ( t )  
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and U(x) is a two-welled potential with a central barrier at x = 0. In the 
high friction limit (7 ~ oo) the escape time can be computed using Kra- 
mers' method. My method, for finite 7, gives the escape time ~-(y) in the 
form 

where 

�9 ( r )=~o  + 4 + 7  (1.2) 

u: = - u"(o) (1.3) 

and r 0 is the escape time computed using Kramers' method. 

(ii) A Class of Two-Dimensional Models -described by 

dx = V V(x) dt + (1.4)  
- a  ~,dWz(t) ] 

which corresponds to a potential system when a = 0, but otherwise not. The 
relaxation time is found to be 

2#~. } 

r (a )  = r(0) [ (2t +/z):  + 4 /~a : ]  l/:  - X +/z  
(1.s) 

where it is assumed that for small x, 

v(x) = v0 + -~(- ~x: + xy:) (1.6) 

For small a this result reduces to the result of Caroli et aL, (51 who have 
recently applied perturbation theory to this problem. The result (1.5) is 
valid, however, for finite a (but small e), while theirs requires small a. 

Simulations are presented for both of these systems, and good agree- 
ment is found between theory and simulations. 

In order to make the work reasonably complete, I first state in Section 
2 the method of Kramers, in a formulation of my own, to illustrate its 
essential points. Section 3 presents the method of computing relaxation 
times for arbitrary bistable systems, and the two applications are presented 
in Section 4. Section 5 contains a summary and comparison with other 
methods. 
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2. ONE-VARIABLE BISTABLE SYSTEMS 

159 

2.1. Fokker-Planck Equation 

Kramers (2) was the first to write down a Fokker-Planck equation for a 
bistable system, in the form 

~,e(x,t) = ax[ v ' ( x ) e ( x , t ) ]  + D~xe(X,t) (2.1) 

where U(x) is a double well potential of the form illustrated in Fig. 1. The 
questions which it is considered of interest to pose about such a system are 
the following: 

(i) Given the potential U(x), what is the stationary distribution 
function P~(x)? In the case of the one-variable system (2.1) we know 

P,(x) = ~ exp[ - U(x)ID] (2.2) 

In multivariable systems this question cannot always be answered. 
(it) If the particle is one well (say around a) how long does it stay 

there? An essentially definitive answer to this question was given by 
Kramers (2) and has been elaborated by others. (3'6's) I will review Kramers' 

A 
II 
a I b 

/ 
\ I 

I' V 
I I ! c~'~ IV",. 

Fig. 1. Double well potential (full curve) and stationary distribution (dashed line). Points a, 
c, are local minima of the potential and b is a local maximum. The point x o is close to the 
local maximum. 
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method in a formulation which makes the assumption and their importance 
clear, and which enables extensions to multivariable systems possible. 

2.2. Kramers' Method Reformulated 

Using the notation of Fig. 1, define 

M(x,  t) = f ~ J x ' P ( x ' ,  t) (2.3) 

Na(t) = 1 - N~(t) = M(b ,  t) (2.4) 

No(t ) = (c - a ) P ( x  o , t) (2.5) 

and define also the corresponding stationary quantities by 

n a = 1 - n c = P , ( x ) d x  (2.6) 
O0 

n o = (c - a)Ps(xo) (2.7) 

We now solve as follows: from the Fokker-Planck equation (2.1) follows 

t) = DPs(x  ) 0-~ { P ( x ,  t ) /P~(x ) )  (2.8) l(t ( x, 

which is integrated to give 

LX~ = D [ P ( x o , t ) / e ~ ( x o ) -  P ( a , t ) / P s ( a ) ]  (2.9) 

Assumption I .  We wish to consider only long time behavior, so that 
P(x ,  t) has attained the stationary shape in each well, but the relevant 
weights of the two peaks have not reached the stationary value. Quantita- 
tively this means we can set 

e ( x ,  t) ~- Ps(X)Na(t) /na (x  < b) 

Ps(x)Nc( t ) /nc  (x  > b) (2.10) 

Substituting in the right-hand side of the relaxation equation (2.9), for 
x o < b we find 

X(xo)Na(t  ) = D[ N o ( t ) / n  o - Na(t ) /na]  (2.11a) 

I~(xo)Nc(t) = D[ Uo( t ) / n  o - Nr (2.11b) 

with 

X(Xo) -- f X~ P~(x)-l[  1 - ~(x)]  (2.12a) 
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and 

and 

a 1 . ( x o )  = [ l  - 

~(x) = ns Ps(z)dz (x < b) 
x 

1 x 
= n~- fb P~(z)dz (x > b) 

Notice that ~(Xo) + pZCo) is independent of x o. 

(2.12b) 

(2.13) 

Assumption II. Ps(x) must have a sharp minimum at x = b-- thus  
the two states are well separated. As Van Kampen (8) points out, the very 
concept of a two-state system requires this. This means that (i) P~(x)-1 has 
a sharp maximum at x = b and (ii) +(x) is extremely small in the vicinity of 
x = b. In this case one can write approximately 

~(Xo ) ~ (XOdx ps(x )-1 (2.14) 
d a  

2.3. Three-State Interpretation 

Equations (2.11) correspond to a process symbolically able to be 
written as 

N~.-~- N o ~  N C (2.15) 

except that there is no equation for N 0. However, by noting that N a + Arc 
-- 1, we find that 

No(t) = no[ tL(xo)U~(t) + K(xo)Uc(t) ]/I~(xo) + I~(Xo) ] (2.16) 

This is the same solution as would be obtained by adiabatically eliminating 
the variable No(t ) from the differential equation for No(t): 

.No(t) = D { Ua(t)/In,~(Xo) ] + N~(t)/[ nA~(Xo) ] 

-No(t)I(nox(Xo))- l+ (n0/~(x0))- l ] )  (2.17) 

which is implied by the reaction scheme (2.5) and the other two equations 
(2.11). Such a procedure is valid when the rate constant for No(t ) is much 
larger than the other two, and, it can be seen that the ratio is of the order of 
nJno, which is very large, since n~ is of the order of 1, and n o is 
proportional to the very small probability of being at x 0. 
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This three-state interpretation is essentially the transition state theory 
of Eyring. (9) 

2.4. 

with 

Elimination of Intermediate States 

Eliminating N o ( t  ) from (2.11) we get 

]Va( t )  --- _ ]Qc( t )  = raNa(  t ) - rcN~(  t ) (2.18) 

{f: ra = D n a d x P s ( s ) - l [ 1  - t~(x)] (2.19a) 

rc = D {nc faf aX P,(x)-'[1-- ] } - '  (2.19b) 

where it is noted that r a and r c are independent of x0: thus the precise 
choice of x 0 does not affect the interpeak relaxation. 

2.5. Splitting Probabilities 

Van Kampen (8) has considered the probability that the system, started 
at x o, will reach the vicinity of a or c. The picture (2.15) indicates that the 
ratio of these two probabilities, ~r a and 7re, must be the ratio of the rates at 
which N O decays, respectively, to Na and N C. Thus we deduce 

~r a = g ( X o ) / [  X(Xo) + ~(Xo) ],  ~r b = X (Xo) / [  ~(Xo) + g(Xo) ] (2.20) 
which is in agreement with his exact results if we make Assumption II. 

2.6. Escape Probability 

The escape probability per unit time for a particle initially near a, to 
reach x 0, is the decay rate of N~(t) under the condition that an absorbing 
barrier is at x 0. This means that in (2.9) we set P ( x o ,  t) = 0 [but note that 
P s ( x )  is defined by (2.2)]. Similar reasoning gives us 

I~ a ( t) = - -  DNa( t) / [ n a K  (Xo) ] (2.21) 
so that the mean exit time is given by 

,T O = na D - I  faXOdx P s ( x ) - ~ [ 1  _ t~(x)] (2.22) 

This result is exact for x 0 < b, and both it and the exact result differ very 
little from the approximation obtained from Assumption II, which sets 
+(x) = 0, and' is valid for x o near b. 
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3. MULTIVARIATE SYSTEMS 

The multidimensional case was first treated by Landauer and Swan- 
son (12) and restated by Langer. (4) In the following we generalize and 
formalize Landauer and Swanson's method to nonpotential situations. 

3.1, Fokker-Planck Equation 

We consider a completely general Fokker-Planck equation in l dimen- 
sions 

0,P = V. [ - v ( x ) P  + eD(x) �9 VP] (3.1) 

[For computational convenience we write the diffusion matrix D(x) to the 
fight of the gradient, so that v(x) is not exactly the usual drift velocity.] The 
stationary solution of (3.1) is to be called P~(x), and can only be exhibited 
explicitly if (3.1) satisfies potential conditions. We assume that P,(x) has 
two well-defined maxima at a and e, and well-defined saddle point at b (see 
Fig. 2), and that the value at the saddle point is very much smaller than the 
values at a and e. We introduce a family of ( l -  1)-dimensional planes 
S(w), where w is a parameter which labels the planes. We choose S(a) to 
pass through a, S(b) through b, and S(c) through e. The planes S(w) are 
assumed to be oriented in such a way that P~(x) has a unique maximum 
when restricted to any one of them. We define, similarly to the treatment in 
Section 2, 

M[ s(w) ] =  Lf-(w) dxe(x) (3.2) 

Fig. 2. Contours of the stationary distribution function Ps(x). The plane S(w) is oriented so 
that Ps(x) has a unique maximum there and the curve x = u(w) is the locus of these maxima 
(dashed line). 
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where L(w) is the region of space to the left of the plane S(w). Then 

h;/[S(w)] =fS(w)dS.[-v(x)P + ,D(x) .  VP] (3.3) 

3.2. Current in Stationary State 

The current in the stationary state is defined by 

Js = -v(x)e  + D(x). vPs (3.4) 

Assumption I. We exclude cases in which finite currents J s occur 
where P~ is very small. Because of V �9 J,  = 0, we can always write 

J~ = - cV. (AP~) (3.5) 

where A is an antisymmetric tensor. We require that A(x) be a slowly 
varying function of x in comparison to P~(x). 

3.3. 

by 

Relaxation Equations 

Relaxation equations are derived in two stages. Define a quantity fl(x) 

fl(x) = P(x, t)lPs(x ) ~ Na(t)/n a (x near a) 

Nc(t)/n c (x near c) (3.6) 

This is the assumption that all relaxation within peaks has ceased and that 
only equilibration of the total populations in each peak is taking place. 
Substitute now in (3.3), integrate by parts discarding terms at infinity, and 
obtain 

J~/[ S(w)] = C~(w)dS..,~ [ ~ (x ) .  V fl ]Ps(x) (3.7) 

with 

~(x) = D(x) + A(x) (3.8) 

Assumption II. P~(x) is sharply singly peaked on S(w), so we may 
make the approximate evaluation 

3~/[S(w)] = { [ n ( w ) . ~ ( x ) .  Vfl].(w) + ~(w)) fS(w)dSPs(x) (3.9) 

where 8(w) is expected to be very much smaller than the term in square 
brackets. Here u(w) is the position at which Ps(X) has its maximum value 
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when restricted to S(w). The validity of (3.9) depends on the validity of 
Assumption I, that A is slowly varying compared to Ps(x). 

Assumption Ill. The direction of n(w) can be chosen so that 
ai)r(x) �9 n(w) is parallel to the tangent at w to the curve x = u(w)--without 
violating the other assumptions. Hence 

@rEu(w)] �9 n(w) = d(w) OwU(W) (3.10) 

This equation, if it has any  solutions, gives a way of determining n(w) 
and hence the planes S(w). We show how to use it in two examples given in 
Section 4. The quantity d(w) is thus defined by (3.10). 

Define now 

p(w) = fS(w)dSes(x) (3.11) 

which is (up to a slowly varying factor) the probability density for the 
particle to be on the plane S(w), and is expected to have a two-peaked 
shape, with maxima at w = a and w = c, and a minimum at w = b. 

Assumption IV. These are assumed to be sharp maxima and min- 
ima. Neglecting 6(w), making the choice (3.11), and noting 

8~u(w) �9 Vf l [  u(w) ] = Owfl[u(w)] (3.12) 

we find 

f W~ { M [ S ( w ) ] / [ p ( w ) d ( w ) ] }  = f l (Wo)-  fl(a) (3.13) 

and using the sharp peaked nature of p(w) -1, (3.13) can now be approxi- 
mated by taking the value at the peak, using (3.6) and, 

N(a, t) = M[S(b) ,  t] (3.14) 

as well as defining 

(Wo) = s176 p(w) ]-'  dw (3.15a) 

(w0) = s  e(w)] -'  dw (3.15b) 

to obtain the relaxation equations 

X(wo)N,(t ) = d(wo)[ No(t) /n  o - Na(t)/na] (3.16a) 

I~(wo)Nc(t ) = d(wo)[No(t) /n o - Nc(t)/n~] (3.16b) 

which are of exactly the same for as those in the one variable case, and can 
be interpreted similarly to secs. 2.3-2.5. 
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The escape time from well a is obtained by setting No(t ) = 0 in Eq. 
(3.16a), and is 

n a 
- d(wo ) K(Wo) (3.17) 

4. APPLICATIONS 

This section considers two quite different two-dimensional problems; 
firstly Kramers' equation, which is of classic interest, and which does not 
have a nontrival limit with a potential solution, and secondly, a model in 
which an explicit nonpotential term is added to a drift arising from a 
potential. We show how the method of Section 3 can be used to calculate 
explicitly the escape times from both of these systems. 

4.1. Kramers' Equation 

We consider Brownian motion in velocity and position as initially 
introduced by Kramers. (2) Thus, we consider the Fokker-Planck equation 

~P(x,p,t) OP , x  OP (OP TO2P) 
8 t - P -8"xx + U ( )--~-P +Y -~P P P + 8 p : (4.1) 

In the notation of Eq. (3.1) we have 

x = (x,  p )  

v(x) = ( p ,  - U ' ( x )  - ~ ,p)  

(4.2) 

(4.3) 

(4.4) 

(4.5) 

Hence we can write 

e = T  

(0 
Ps (x) = 0L2ex p 2 T 

%2 = [2~r] -1/2% 1 

%1= f ] dx exp T 

U(x) l 
T J (4.6) 

(4.7) 

(4.8) 
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and the current in the stationary state is 

so that A exists, and 

-1)0 
Thus Assumption I is satisfied. 

The plane S(w) can be written in the form of 

kx + p = w (4.12) 

Assumption II requires us to maximize P~(x) on this plane, i.e., to maximize 
_ �89 _ U(x) on this plane. Using standard methods, we find that maxima 
must lie along the curve u(w) given by 

u(w) = [x(w) ) = [ x(w) ] (4.13) 
~p(w) ~w-~(w)} 

where x(w) satisfies 

U'[x(w)] + X2x(w) - Xw = 0 (4.14) 

Whether P~(x) is sharply peaked depends on the nature of U(x). 
We now implement Assumption III. 
The parameter X is a function of w on the particular set of planes 

which satisfy (3.10). The tangent to u(w) is parallel to 

( dx dx _ x d X  ] 
-d--ww ' l - h--d-dw dw J 

and differentiating (4.14), we have 

dx U" -1[ d~ (2Lx _ w)] dw =[ + ~2] 7 , -  

The normal to (4.12) is parallel to (~, 1). Hence 

1 ~ - 1 ~)  

and this is parallel to 8u(w)/Ow if 

dx / l=(l_•dx_ dX 
aw x~)/(V-X) 

(4.15) 

(4.16) 

(4.17) 

Thus, (4.17) is the explicit form of Assumption III, Eq. (3.10). We can now 
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solve (4.17) and (4.15) simultaneously, to get 

dw 7 --~ x(U,, +-h-7~7 (2kx _ w) (4.18) 

d X _  1 [ U " - X T + X  2 ] 
aw 3, L x ( U "  +~-T) -~(2kx - w) j (4.19) 

These equations are somewhat singular near x = 0. Two kinds of solutions 
exist, depending on whether 

lim I U"[  x (w)]  - X(w)7 + X(w) 2 t 
w~0[ x(w)( U"[x-~-~ +-X-(w-~ 7 {2h(w)x(w)- w) J (4.20) 

is finite or infinite. It is not difficult to show that if U(x) has a power series 
expansion round x = 0, only the case for (4.20) finite occurs. Assuming this, 
we see that choosing w = 0<=>x = 0, and from (4.18) it follows that 

x'-'-'w/'r as w~--0 (4.21) 

Near x = 0, we write approximately 

U[ x] ~ U o - �89 Uo x2 (4.22) 

And substituting (4.22) and (4.21) in (4.14), we see that 

X 2 - y~. + U " ( O )  = 0 (4.2.3) 

which determines 

7 __ + U 2 (4.24) x ( o )  = 

We now see that (4.19) tells us that dh/dw = 0 when w = 0. Thus, X will 
not change significantly from (4.24) around the saddle point, and we shall 
from now on approximate X by (4.24). 

Only one of the roots is acceptable, and physically, this should be 
X--> oo in the high friction limit, which would give Kramers' result, and 
requires the positive sign. The other root corresponds to taking planes such 
that we get a minimum of Ps(x) on them. 

We now integrate (3.11), and determine d(w). Notice that d(w) must 
be defined with n(w) a unit vector. Substituting directly in (4.16) and using 
(4.21) we find 

(1 + X2) - ,/2 = dXdw (w = O) d(O) = 1 d(O) (4.25) 

so that 

d(O) = ~,(1 + X2) -L/2 (4.26) 
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Further 

P( W) = fS(w)IdS Px(N)[ =~JS(w) ( dx2 + d])2) l/2 ps( X' P) 

[1 + X2] l/: 1 p2 U[ w - p  
)t f d p e x p { - [ ~  + t ) I / T }  (4"27) - 

An exact evaluation depends on the choice of U(x). Approximately, we use 

U(x) "-" go - �89 U2 xz (4.28) 

and evaluate the result as a Gaussian: we get 

p(w) - T(1 + X2)I/2X %2e -Uo/rexP[2T(~uz)U2w2 ] (4.29) 

and thus 
o 1 )W e Go~ T 

x ( O ) = f ~ o p ( w ) - ' d w =  5 % 2 '  (1 +h2) '/2 ~ -t~(0) (4.30) 

Thus, from (3.17) we have for the escape time from one well to the plane 
S(0) 

% = K(0)d(0)-' = ~ eg~ -0-2212" ]1/2 (4.31) 

= -~ -~ -{- "~- "[- U 2 e Uo/r%~ • -~2 (4.32) 

4.2. Comparison with Other Methods 

In fact, no other methods of computing the mean first passage time to 
the center have been given, other than Kramers' simple result. However, 
there are several results which can usefully be compared. We will go 
through these in order of complexity. 

(i) Exact One-Dimensional Mean First Passage Time (Smo- 
Iuchowski's Equation). One reduces Kramers' equation in the large 
Friction limit (1~ to the Smoluchowski equation for 

; e ( x , 0  = ave(x,v,t)  (4.33) 

namely, 

~P(x,t) ^ 
_ 1 0 [ U , ( x ) +  T ~P (4.34) Ot Y ~x ( 3x ) 
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and [he exact result for the mean first passage time from x = a to x = 0 for 
this equation is 

~', = 7s U(x) T ] (4.35) 

This result can be evaluated numerically. 

(li) Kramers '  Result. This is obtained by applying our method to 
the one-dimensional Smoluchowski equation (4.34), and making Gaussian 
approximations to all integrals---it corresponds to (2.14), but evaluated in a 
Gaussian approximation. The result is 

1 ( 2 q r )  W2 r 2 = ~ ye Vo/r%; 1 -~2 (4.36) 

which differs from (4.32) for % by the replacement X ~  7, which is valid in 
a large 7 limit. In this limit 

ro~-- (1 + U2y-2)'r2 (4.37) 

( i i i)  Corrected Smoluchowsk i .  Stratonovich,(13) Wilemski,(12) 
and Titulaer (~4) have shown that to next highest order in 7, a more accurate 
equation than the Smoluchowski equation (4.33) is the corrected Smo- 
luchowski equation 

Ot 7 3x [ l + 7 . 2 U ' ( x ) ]  U'(x)+ TOP-~x (4.38) 

(A didactic treatment of this problem is given in Ref. 15.) One now 
calculates the exact mean first passage time for this equation using stan- 
dard theory; it is 

%=ys ___f__]f:ood exp[ U(Z)T ] ( 4 . 3 9 )  

Note, however, that the principal contribution to the x integral comes from 
near x = 0, so that the small correction term, y-2U"(x), should be suffi- 
ciently accurately evaluated by setting 

U ' ( x )  ~ U ' (0)  -- - V 2 (4.40) 

i n  (4.39). We then find the corrected Smoluchowski result, 

% = (1 - u -----(1 + y-2U2) % (4.41) 

Notice that in this limit 
~'3 'To 

- (4.42) 
~'1 "/'2 
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which means that in the limit that all integrals may be evaluated as sharply 
peaked Gaussians, our result is in agreement with the corrected Smo- 
luchowski. 

(iv) Simulat ions.  By computer simulation of the equivalent sto- 
chastic differential equations 

dx =pat  

dp = - [yp + U ' (x ) ]  dt + (2yT)]/2dW(t) (4.43) 

we can estimate the mean first passage time to the plane So--i.e., to the line 

p = - X x  (4.44) 

The results have to be computed for a given set of potentials. In order to 
assess the effect of sharpness of peaking, we consider different tempera- 
tures, T, and the simulations were performed with the potential 

U(x) = l (x2  - 1) 2 (4.45) 

The results are shown in Fig. 3. They separate naturally into two sets--  
curves, or straight lines. The best answer is the corrected Smoluchowski, 
which agrees with the simulations at all temperatures, and at low tempera- 
tures agrees with our method. Thus we confirm the validity of the method 
in the region of validity expected, since low temperature corresponds to 
sharply peaked distributions. Notice also that the choice of the plane S 0 as 
the separatrix is appropriate on another ground. For, near to x = 0, p = 0, 
we can write 

dx =pdt  
(4.46) 

4t0 = [ -- ~p + U2x ] dt  + (2vT)l/2dW(t) 
The condition that the deterministic part of (dx, dp), namely, ( p , - y p  + 
U2x) is in the direction connecting the point (x, p) to the origin is clearly 

P _ x (4.47) 
- yp + U2x p 

Putting p --- - x ,  we find 

)t 2 + 2 t - / -  U 2 = 0 (4 .48)  

which is the same as (4.23) near x = 0. The two solutions correspond to the 
deterministic motion pointing towards the origin (positive root) or pointing 
away from the origin (negative root). 

Thus, when the particle is on the separatrix, in the next time interval 
dt, only the random term dW(t) will move it off this separatrix, and it will 
move it right or left with equal probability, i.e., this means that the splitting 
probability, to left or right, should be 1 : 1 on this plane. 
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Fig. 3. 
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U ( x )  = � 8 8  2 - 1) 2 according to Kramers'  equation. 

in a double well 

4.3. General Two-Dimensional Model 

The result (3.5) can be interpreted from quite a different point of view. 
Supposing we assume that P~(x) and D(x) are known; then (3.5) can be 
used to specify all v(x) which are compatible with these, through 

v(x) - e e D(x)-VP,(x) (4.49) ~. (,,) v .  [A(x)e,(,,)] + e-]T~ 

Viewed this way, we can consider the effect of varying the nonpotential 
term, [determined by A(x)], while keeping fixed Ps(x) and D(x). This has 
recently been carried out by Caroliet al. (5) by a perturbation method in 
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which A(x) is taken to be small. Our method will obviously be applicable to 
this situation, provided A(x) is chosen to satisfy Assumption I, and Ps(x) is 
chosen to satisfy Assumption II. Assumption III then provides the method 
of solving the problem. 

Let us choose a simple two-dimensional model, like that of Caroli e t  al. 

We choose 
x = (x ,  y )  

b = (0, 0) 

and we assume that 
point at b = (0, 0): 

U(x)  ~ Uo + ~ (- ~x 2 + ~y2) 

We will use the notation 

D(x)= (1 01) (4.50) 

A ( x ) = (  0a - 0 )  

Ps(x) = % e x p [ -  U(x) / , ]  

U(x) has a quadratic expansion around the saddle 

(4.51) 

(4.52) 

Since all essential quantities depend only on the behavior of quantities near 
the saddle point, we can use (4.51) in all subsequent calculations. 

We take the plane S(w) to be in the form 

n.  x = w (4.53) 

and determine u(w), the position of the maximum of Ps(x) on S(w). 
Standard methods give 

u(w) = G- l -  nw/(n  �9 G - l -  n) (4.54) 

Assumption III now imposes the condition 

G . 6~T . n = d ( w ) l l / ( n .  G- l -  n) (4.55) 

which means that n is an eigenvector of GaD r, whose eigenvalue is 

d(w)/(n" ~-1. n) 

The eigenvalues of 
- pa 

G ~  = ( ~a/t ~p) (4.56) 
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are 

X - / s  + [(X + #~)2 + 4/x)ta2]~/a 
Z ~  

2 

The root corresponding to a maximum of P~(x) is that such that 

n . G - l . n < 0  

We can write 

where 

(4.57) 

(4.58) 

(4.59) 

n . G  - l . n =  /~a 2 - 3 ,  (4.61) 
t~)t(1 + a 2) 

and hence the appropriate root must satisfy 

a 2 < 7t//~ (4.62) 

which is the case for the negative root in (4.60), for any a. Hence we now 
use a = a _ ,  and deduce that 

a ( w ) = ~ n . G - l - n =  - e z  X~(l  + ~ z )  > 0  (4.63) 

which is independent of w, a fact that arises from the approximation (4.51). 
We now determine 

?(w) =lf dSP,(x)l (4.64) 

by using the Gaussian approximation to Pfix) arising from the approxima- 
tion (4.51) to U(x). The method is similar to that of Section 4.1, and yie lds  

w 2 t~X(1 + a a) 

Hence we can compute 

x(O)=f~ dwp(w)-l--19L-leUo/~( X--a2# 1 + - ~  ] (4.66) 

z+/~ (X + P') -+ [ (h + P')2 + 4P'~'a2] ~/2 
= a .  --- - (4.60) 

- pa 2pa 

Then 
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The escape time is then given by 

1 le Uo/~ ! Ix 
= n ( a ) ~ ( O ) d ( O ) - ~ =  -~%-  ~lz t  

= 1 ~gL-le u0/~ 2/~7t (4.68) 
4 [Qt +/~)2 + 4/.t~a2] 1/2 _ (~ _/~) 

If a is sufficiently small 

( ~a2 ) (a<<l) (4.69) r 9L-le U~ 1 ?~ + ~ 

which is in complete agreement with the result of Caroli et al. (5) The full 
result, (4.68), is however valid for all a, i.e., all magnitudes of nonpotential 
force. One finds that if a is very large 

'r = -~c %-leU~ ( Ix~)l/2 (4.70) 

which shows that the escape time (in the approximations used) becomes 
quite small for large enough a. 

We have performed simulations using 

U ( x ) -  ( x 2 -  1) y2 
4 + -~- (4.71) 

(for which/~ = ~ = 1) and c = 0.1 in which case 

exp(1/4c)(1 + a2) - 1/2_ 27.06 T ( a )  

(l + 

The comparison with simulations is given in Fig. 4. In this case there does 

5O 
t,0 

3O 

2O 
T(al 

10 

i r i o'~ o~ oS os & 0.6 0.7 o!s Q9 11o 
Q 

Fig. 4. Comparison of theoretical result (curve) with simulations for the escape time for a 
system obeying the model of Section 4.3, with potential U(x) = ~(x a - 1) 2 + ~y2. 
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seem to be a disagreement in absolute normalization, but the (1 + a2) - i/2 
dependence is confirmed. The problem must lie in the simulation tech- 
nique, since for a = 0, the x a n d y  equations are quite independent, and the 
escape problem becomes purely one dimensional. The exact one-dimen- 
sional escape time in this situation is very close to 27.06, and disagrees with 
the a = 0 simulation. 

5. SUMMARY AND CONCLUSIONS 

It has now been demonstrated that the problem of relaxation of a 
bistable Fokker-Planck system in which a potential solution does not exist 
is essentially of the same kind as that in which a potential solution does 
exist. The notable difference is a practical problem--namely,  how does one 
obtain a solution for P~(x), the stationary distribution. 

It is interesting to note that alternative asymptotic methods developed 
by Schuss and Matkowsky, (16-18) which are more mathematical in nature 
require the same general assumptions as mine, namely, small noise, and 
further, also require a knowledge of P~(x). It is therefore towards a solution 
of this practical problem that future efforts must be directed. 

ACKNOWLEDGMENTS 

The simulations were performed by Mr. C. M. Savage and Dr. M. L. 
Steyn-Ross, to whom I would like to express my thanks. Correspondence, 
and preprints from Professor B. Roulet, and Professor N. G. van Kampen 
are also gratefully acknowledged. 

NOTE ADDED IN PROOF 

It has recently been pointed out (B. J. Matkowsky, Z. Schuss and 
E. Ben Jacob, S I A M  J. Appl. Math 42:835 (1982)) that, in spite of his 
disclaimers, Kramers did give a value for the escape time is his equation for 
arbitrary friction, and that this result is identical with eq. 4.32. 
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